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If we now calculate the rate of change of the mean  small we needed to make the time intervals Af in the
energy of the oscillators [by multiplying the ith cqua-  numerical integration, and how many levels we needed
tion in (4) by 7 and summing], we find that the terms  to include to avoid having molecules “piling up” at the
involving transfer of vibrational energy from onc top level during the relaxation; inspection of the A;
; oscillator to another contribute nothing, and we ob- also was used to avoid this last source of error.
1 tain a simple linear differential equation for the relaxa- One other point must be made before discussing our
: tion of the mean encrgy; results. One can readily verify that substitution of
Heifdr=se?—(1-c) (), O (=cmn@e®, gl =(i+s—1) Y (s—1) ki |
where r=aMt and ()=, 4iA,. The solution to this (‘

Sl e i

equation is
()=Lse~/(1—e) J{1— exp[— (1—¢) 7]}
+(e)exp[—(1—¢ )7 ], (0)

where (e) is the initial mean energy. This result is a
simple extension of Montroll and Shuler’s® Eq. (1.18),
and is a special case of a problem discussed in reference
1(c).

We may readily investigate the case in which inter-
action with the heat-bath molecules M can be ignored,
so that (e)(t) = (&). Noting that D, ojd;= (¢) and
that Z,-_OA ;=1 (assuming unit total concentration

of 4), we obtain from Eq. (4) the following result:

aA.-/dz=a(<e0>+s>{ (i-+1) Aot (i-+5—1)

(e0) L (e0)
(60)+SA._1 [z+(z+S) (eo)+s]A'}' (7)
This is identical in form to the equation obtained'
describing the relaxation of [57] oscillators in contact
with a heat bath at a temperature defined by =
(e0)/({eo)+s). The equations can be solved in exactly
the same way as was used in reference 1(k), a method
used carlicr by Montroll and Shuler.?

Onc may then take expression (6) for (e), substitute
it for (&) in Lq. (7), and then substitute the right-
hand side of this result in Eqs. (4) in place of the four
summations. This converts (4) into a system of first-
order, homogeneous, linear differential equations. Un-
fortunately, the coefficients depend on the time in a
modcrately complex way, so that this linearization of
the nonlinear problem does not lead to simpler machine
computation than would result from using Iigs. (4)
as is.

Equations (4) were therefore programmed for nu-
merical integration by the Heun-Euler method,” and
the various examples were computed. As checks on
rounding off and truncation errors, we computed
2 iA i, which should be unity, and an'A iy which was
then compared with the value of the energy computed
by Eq. (6). These results enabled us to determine how

( s E7.) W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454
1957).

" See, for example, H. Margenau and G. M. Murphy, The
Mathematics of Plysics and Chemistry (D. Van Nostrand Com-
pany, Inc., Princeton, New Jersey, 1956), 2nd ed., Sec. 13.17.

for A, (with similar expressions for 4;, etc.) causes the
four summations in Eqs. (4) to cancel out identically,
no matter what value of © is used. Therefore, after the
distribution A, has once become of Boltzmann type,
the system will continue to relax to equilibrium through
a scries of Boltzmann distributions in exactly the same
way as does a similar system in which the only mode
of energy transfer is to and from the heat bath. This
latter problem has been studied in detail.’™®® It was
therefore necessary for us to carry out our integrations
only until a Boltzmann distribution” (at a tempera-
turce generally quite different from that of the heat
bath) was rcached; the remainder of the rclaxation
could yield nothing not already understood.

The calculation above of the mean energy of the
system showed that the transfer of quanta among the
molecules of interest had no effect on the relaxation of
the mean energy. As one would expect, however, the
mean-square energy ()= Y 424; docs depend on the
efliciency of this mode of energy transfer. If one mul-
tiplies Eqs. (4) by 42, sums, uses the definitions of (e)
and (¢*), and inserts the expression (6) for (e), one
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16, 1. Plots of An/Zid; vs n. The dimensionless time (aMt)
elapsed since initial excitation is indicated by each plot.
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